Authors
Topics
Lists
Pictures
Resources
More about Thomas Little Heath
Thomas Little Heath -
Time
Quotes
8 Sourced Quotes
View all Thomas Little Heath Quotes
Source
Report...
By the time of Hippocrates of Chios the scope of Greek geometry was no longer even limited to the Elements; certain special problems were also attacked which were beyond the power of the geometry of the straight line and circle, and which were destined to play a great part in determining the direction taken by Greek geometry in its highest flights. The main problems in question were three: (1) the doubling of the cube, (2) the trisection of any angle, (3) the squaring of the circle; and from the time of Hippocrates onwards the investigation of these problems proceeded pari passu with the completion of the body of the Elements.
Thomas Little Heath
Source
Report...
The most probable view is that adopted by Nesselmann, that the works which we know under the three titles formed part of one arithmetical work, which was, according to the author's own words, to consist of thirteen Books. The proportion of the lost parts to the whole is probably less than it might be supposed to be. The Porisms form the part the loss of which is most to be regretted, for from the references to them it is clear that they contained propositions in the Theory of Numbers most wonderful for the time.
Thomas Little Heath
Source
Report...
The trisection of an angle was effected by means of a curve discovered by Hippias of Elis, the sophist, a contemporary of Hippocrates as well as of Democritus and Socrates. The curve was called the quadratrix because it also served (in the hands, as we are told, of Dinostratus, brother of Menæchmus, and of Nicomedes) for squaring the circle. It was theoretically constructed as the locus of the point of intersection of two straight lines moving at uniform speeds and in the same time, one motion being angular and the other rectilinear.
Thomas Little Heath
Source
Report...
An edition is... still wanted which shall, while in some places adhering... to the original text, at the same time be so entirely remodeled by the aid of accepted modern notation as to be thoroughly readable by any competent mathematician, and this want it is the object of the present work to supply.
Thomas Little Heath
Source
Report...
Hippocrates himself is an example of the concurrent study of the two departments. On the one hand, he was the first of the Greeks who is known to have compiled a book of Elements. This book, we may be sure, contained in particular the most important propositions about the circle included in Euclid, Book III. But a much more important proposition is attributed to Hippocrates; he is said to have been the first to prove that circles are to one another as the squares on their diameters with the deduction that similar segments of circles are to one another as the squares on their bases. These propositions were used by him in his tract on the squaring of lunes, which was intended to lead up to the squaring of the circle. The latter problem is one which must have exercised practical geometers from time immemorial. Anaxagoras for instance is said to have worked at the problem while in prison.
Thomas Little Heath
Source
Report...
Diophantos lived in a period when the Greek mathematicians of great original power had been succeeded by a number of learned commentators, who confined their investigations within the limits already reached, without attempting to further the development of the science. To this general rule there are two most striking exceptions, in different branches of mathematics, Diophantos and Pappos. These two mathematicians, who would have been an ornament to any age, were destined by fate to live and labour at a time when their work could not check the decay of mathematical learning.
Thomas Little Heath
Source
Report...
The outstanding personalities of Euclid and Archimedes demand chapters to themselves. Euclid, the author of the incomparable Elements, wrote on almost all the other branches of mathematics known in his day. Archimedes's work, all original and set forth in treatises which are models of scientific exposition, perfect in form and style, was even wider in its range of subjects. The imperishable and unique monuments of the genius of these two men must be detached from their surroundings and seen as a whole if we would appreciate to the full the pre-eminent place which they occupy, and will hold for all time, in the history of science.
Thomas Little Heath
Source
Report...
Dr. James Gow did a great service by the publication in 1884 of his Short History of Greek Mathematics, a scholarly and useful work which has held its own and has been quoted with respect and appreciation by authorities on the history of mathematics in all parts of the world. At the date when he wrote, however, Dr. Gow had necessarily to rely upon the works of the pioneers Bretschneider, Hankel, Allman, and Moritz Cantor (first edition). Since then the subject has been very greatly advanced... scholars and mathematicians... have thrown light on many obscure points. It is therefore high time for the complete story to be rewritten.
Thomas Little Heath
Quote of the day
Nobody ever did anything very foolish except from some strong principle.
William Lamb, 2nd Viscount Melbourne
Thomas Little Heath
Born:
October 5, 1861
Died:
March 16, 1940
(aged 78)
More about Thomas Little Heath...
Featured Authors
Lists
Predictions that didn't happen
If it's on the Internet it must be true
Remarkable Last Words (or Near-Last Words)
Picture Quotes
Confucius
Philip James Bailey
Eleanor Roosevelt
Letitia Elizabeth Landon
Popular Topics
life
love
nature
time
god
power
human
mind
work
art
heart
thought
men
day
×
Lib Quotes