Authors
Topics
Lists
Pictures
Resources
More about Thomas Little Heath
Thomas Little Heath -
Circle
Quotes
5 Sourced Quotes
View all Thomas Little Heath Quotes
Source
Report...
By the time of Hippocrates of Chios the scope of Greek geometry was no longer even limited to the Elements; certain special problems were also attacked which were beyond the power of the geometry of the straight line and circle, and which were destined to play a great part in determining the direction taken by Greek geometry in its highest flights. The main problems in question were three: (1) the doubling of the cube, (2) the trisection of any angle, (3) the squaring of the circle; and from the time of Hippocrates onwards the investigation of these problems proceeded pari passu with the completion of the body of the Elements.
Thomas Little Heath
Source
Report...
Take the case of a famous problem which plays a great part in the history of Greek geometry, the doubling of the cube, or its equivalent, the finding of two mean proportionals in continued proportion between two given straight lines. ...if all the recorded solutions are collected together, it is much easier to see the relations, amounting in some cases to substantial identity, between them, and to get a comprehensive view of the history of the problem. I have therefore dealt with this problem in a separate section of the chapter devoted to 'Special Problems,' and I have followed the same course with the other famous problems of squaring the circle and trisecting any angle.
Thomas Little Heath
Source
Report...
The trisection of an angle was effected by means of a curve discovered by Hippias of Elis, the sophist, a contemporary of Hippocrates as well as of Democritus and Socrates. The curve was called the quadratrix because it also served (in the hands, as we are told, of Dinostratus, brother of Menæchmus, and of Nicomedes) for squaring the circle. It was theoretically constructed as the locus of the point of intersection of two straight lines moving at uniform speeds and in the same time, one motion being angular and the other rectilinear.
Thomas Little Heath
Source
Report...
Hippocrates himself is an example of the concurrent study of the two departments. On the one hand, he was the first of the Greeks who is known to have compiled a book of Elements. This book, we may be sure, contained in particular the most important propositions about the circle included in Euclid, Book III. But a much more important proposition is attributed to Hippocrates; he is said to have been the first to prove that circles are to one another as the squares on their diameters with the deduction that similar segments of circles are to one another as the squares on their bases. These propositions were used by him in his tract on the squaring of lunes, which was intended to lead up to the squaring of the circle. The latter problem is one which must have exercised practical geometers from time immemorial. Anaxagoras for instance is said to have worked at the problem while in prison.
Thomas Little Heath
Source
Report...
Hippocrates... is said to have proved the theorem that circles are to one another as the squares on their diameters, and it is difficult to see how he could have done this except by some form, or anticipation, of the method [of exhaustion].
Thomas Little Heath
Quote of the day
It is better to meet danger than to wait for it. He that is on a lee shore, and foresees a hurricane, stands out to sea and encounters a storm to avoid a shipwreck.
Charles Caleb Colton
Thomas Little Heath
Born:
October 5, 1861
Died:
March 16, 1940
(aged 78)
More about Thomas Little Heath...
Featured Authors
Lists
Predictions that didn't happen
If it's on the Internet it must be true
Remarkable Last Words (or Near-Last Words)
Picture Quotes
Confucius
Philip James Bailey
Eleanor Roosevelt
Letitia Elizabeth Landon
Popular Topics
life
love
nature
time
god
power
human
mind
work
art
heart
thought
men
day
×
Lib Quotes